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ABSTRACT

Electronic/artificial noses are being developed
as systems for the automated detection and
classification of odors, vapors, and gases.  An
electronic nose is generally composed of a
chemical sensing system (e.g., sensor array or
spectrometer) and a pattern recognition system
(e.g., artificial neural network).  We are develop-
ing electronic noses for the automated identifi-
cation of volatile chemicals for environmental
and medical applications.  In this paper, we
briefly describe an electronic nose, show some
results from a prototype electronic nose, and
discuss applications of electronic noses in the
environmental, medical, and food industries.

INTRODUCTION

The two main components of an electronic nose
are the sensing system and the automated pat-
tern recognition system.  The sensing system can
be an array of several different sensing elements
(e.g., chemical sensors), where each element
measures a different property of the sensed
chemical, or it can be a single sensing device
(e.g., spectrometer) that produces an array of
measurements for each chemical, or it can be a
combination.  Each chemical vapor presented to
the sensor array produces a signature or pattern
characteristic of the vapor.  By presenting many
different chemicals to the sensor array, a
database of signatures is built up.  This database
of labeled signatures is used to train the pattern
recognition system.  The goal of this training
process is to configure the recognition system to
produce unique classifications of each chemical
so that an automated identification can be
implemented.

The quantity and complexity of the data collected
by sensors array can make conventional chemi-
cal analysis of data in an automated fashion diffi-
cult.  One approach to chemical vapor identifica-
tion is to build an array of sensors, where each
sensor in the array is designed to respond to a
specific chemical.  With this approach, the num-
ber of unique sensors must be at least as great
as the number of chemicals being monitored.   It
is both expensive and difficult to build highly
selective chemical sensors.

Artificial neural networks (ANNs), which have
been used to analyze complex data and to rec-
ognize patterns, are showing promising results in
chemical vapor recognition.  When an ANN is
combined with a sensor array, the number of de-
tectable chemicals is generally greater than the
number of sensors [1].  Also, less selective sen-
sors which are generally less expensive can be
used with this approach.  Once the ANN is
trained for chemical vapor recognition, operation
consists of propagating the sensor data through
the network.  Since this is simply a series of vec-
tor-matrix multiplications, unknown chemicals
can be rapidly identified in the field.

Electronic noses that incorporate ANNs have
been demonstrated in various applications.
Some of these applications will be discussed
later in the paper.  Many ANN configurations and
training algorithms have been used to build elec-
tronic noses including backpropagation-trained,
feed-forward networks; fuzzy ARTmaps;
Kohonen’s self-organizing maps (SOMs); learn-
ing vector quantizers (LVQs); Hamming net-
works; Boltzmann machines; and Hopfield net-
works.  Figure 1 illustrates the basic schematic of
an electronic nose.
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Figure 1: Schematic diagram of an
electronic nose

PROTOTYPE ELECTRONIC NOSE

One of our prototype electronic noses, shown in
Figure 2, is composed of an array of nine tin-
oxide vapor sensors, a humidity sensor, and a
temperature sensor coupled with an ANN.  Two
types of ANNs were constructed for this proto-
type: the standard multilayer feed-forward net-
work trained with the backpropagation algorithm
and the fuzzy ARTmap algorithm [2].  During op-
eration a chemical vapor is blown across the
array, the sensor signals are digitized and fed
into the computer, and the ANN (implemented in
software) then identifies the chemical.  This
identification time is limited only by the response
time of the chemical sensors, which is on the
order of seconds.  This prototype nose has been
used to identify common household chemicals
by their odor [3].

Figure 2: Photograph of the prototype
electronic nose

Figure 3 illustrates the structure of the ANN.  The
nine tin-oxide sensors are commercially avail-
able Taguchi-type gas sensors obtained from
Figaro Co. Ltd. (Sensor 1, TGS 109; Sensors 2
and 3, TGS 822; Sensor 4, TGS 813; Sensor 5,
TGS 821; Sensor 6, TGS 824; Sensor 7, TGS
825; Sensor 8, TGS 842; and Sensor 9, TGS
880).  Exposure of a tin-oxide sensor to a vapor
produces a large change in its electrical resis-
tance.  The humidity sensor (Sensor 10: NH-02)
and the temperature sensor (Sensors 11: 5KD-5)
are used to monitor the conditions of the experi-
ment and are also fed into the ANN.
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Figure 3: Structure of the backpropaga-
tion ANN used in the prototype to identify

household chemicals

Although each sensor is designed for a specific
chemical, each responds to a wide variety of
chemicals.  Collectively, these sensors respond
with unique signatures (patterns) to different
chemicals.  During the training process, various
chemicals with known mixtures are presented to
the system.  By training on samples of various
chemicals, the ANN learns to recognize the
different chemicals.

This prototype nose has been tested on a variety
of household and office supply chemicals includ-
ing acetone, ammonia, ethanol, glass cleaner,
contact cement, correction fluid, iso-propanol,
lighter fluid, methanol, rubber cement and vine-
gar.  For the results shown in the paper, five of
these chemicals were used: acetone, ammonia,
isopropanol, lighter fluid, and vinegar.  Another
category, “none” was used to denote the
absence of all chemicals except those normally
found in the air which resulted in six output cate-
gories from the ANN.  Table 1 lists the training
parameters for one backpropagation and one
fuzzy ARTmap network.

Backpropagation
Architecture: 11-11-6 feedforward
Activation: Logistic Sigmoidal
Learning Rate: 0.10
Momentum: 0.90
No. of Epochs: 1369

Fuzzy ARTMap
Training Vigilance: 0.98
Testing Vigilance: 0.80
No. of Epochs: 3

Table 1: ANN training parameters

Both networks were trained using randomly
selected sample sensor inputs.  The ANNs used
here were not trained to quantify the concentra-
tion level of the identified analytes, but were
trained with samples with different concentra-
tions of the analytes.  This allowed the ANN to
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generalize well on the test data set.
Performance levels of the two networks were
basically equivalent ranging from 89.7% to
98.2% correct identification on the test set
depending on the random selection of training
patterns.  Table 2 summarizes one set of network
performances for novel sensor inputs.

 Num Num Input % Correct
Train Test Substance B P F A
67 28 None 96.4 96.4
75 22 Acetone 100 100
64 14 Ammonia 100 100
93 28 Isopropanol 92.9 100
5 3 Ammonia & Isopr. 00.0 66.7
106 25 Lighter Fluid 100 96.0
74 27 Amm. & Lighter Fluid 100 92.6
66 21 Vinegar 81.0 95.2
68 26 Ammonia & Vinegar 92.3 76.9
1 2 Isopropanol & Vinegar 00.0 00.0
6 1 9 1 9 6 Totals 9 2 . 9 9 3 . 4

Table 2: ANN performance for backprop-
agation (BP) and fuzzy ARTmap (FA)

Figures 4 and 5 illustrate the responses of the
sensors and the ANN classification for a variety
of test chemicals presented to the ANNs.  The
ANN was able to correctly classify the test
samples with only small residual errors.

While the ANN used here was not trained to
quantify the concentration level of the identified
analytes, it was trained with samples with differ-
ent concentrations of the analytes.  This allowed
the ANN to generalize well on the test data set.

From the responses of the sensors to the ana-
lytes, one can easily see that the individual sen-
sors in the array are not selective (Figure 4).  In
addition, when a mixture of two or more chemi-
cals is presented to the sensor array, the resul-
tant pattern (sensor values) may be even harder
to analyze (see Figure 5: c, d, and e).  Thus, ana-
lyzing the sensor responses separately may not
be adequate to yield the classification accuracy
achieved by analyzing the data in parallel.

ELECTRONIC NOSES FOR
ENVIRONMENTAL MONITORING

Enormous amounts of hazardous waste (nuclear,
chemical, and mixed wastes) were generated by
more than 40 years of weapons’ production in
the U.S. Department of Energy’s weapons’
complex.  The Pacific Northwest National
Laboratory is exploring the technologies
required to perform environmental restoration
and waste management in a cost effective
manner.  This effort includes the development of
portable, inexpensive systems capable of real-

time identification of contaminants in the field.
Electronic noses fit this category.

Environmental applications of electronic noses
include analysis of fuel mixtures [4], detection of
oil leaks [5], testing ground water for odors, and
identification of household odors [3].  Potential
applications include identification of toxic wastes,
air quality monitoring, and monitoring factory
emissions.

ELECTRONIC NOSES FOR MEDICINE

Because the sense of smell is an important
sense to the physician, an electronic nose has
applicability as a diagnostic tool.  An electronic
nose can examine odors from the body (e.g.,
breath, wounds, body fluids, etc.) and identify
possible problems.  Odors in the breath can be
indicative of gastrointestinal problems, sinus
problems, infections, diabetes, and liver prob-
lems.  Infected wounds and tissues emit distinc-
tive odors that can be detected by an electronic
nose.  Odors coming from body fluids can indi-
cate liver and bladder problems.  Currently, an
electronic nose for examining wound infections
is being tested at South Manchester University
Hospital  [6].

A more futuristic application of electronic noses
has been recently proposed for telesurgery [7].
While the inclusion of visual, aural, and tactile
senses into telepresent systems is widespread,
the sense of smell has been largely ignored.  An
electronic nose will potentially be a key compo-
nent in an olfactory input to telepresent virtual
reality systems including telesurgery.  The elec-
tronic nose would identify odors in the remote
surgical environment.  These identified odors
would then be electronically transmitted to an-
other site where an odor generation system
would recreate them.

ELECTRONIC NOSES FOR THE FOOD
INDUSTRY

Currently, the biggest market for electronic noses
is the food industry [8].  Applications of electronic
noses in the food industry include quality
assessment in food production [9], inspection of
food quality by odor, control of food cooking pro-
cesses [10], inspection of fish, monitoring the
fermentation process, checking rancidity of may-
onnaise, verifying if orange juice is natural, moni-
toring food and beverage odors [11], grading
whiskey, inspection of beverage containers,
checking plastic wrap for containment of onion
odor, and automated flavor control [12] to name a
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few.  In some instances electronic noses can be
used to augment or replace panels of human
experts.  In other cases, electronic noses can be
used to reduce the amount of analytical
chemistry that is performed in food production
especially when qualitative results will do.

DISCUSSION

In this paper we discussed electronic noses, a
prototype system that identifies common house-
hold chemicals, and applications of electronic
noses in the environmental, medical, and food
industries.  The major differences between elec-
tronic noses and standard analytical chemistry
equipment are that electronic noses (1) produce
a qualitative output, (2) can often be easier to
automate, and (3) can be used in real-time anal-
ysis.

These results from the prototype electronic nose
demonstrate the pattern recognition capabilities
of the neural network paradigm in sensor analy-
sis, especially when the individual sensors are
not highly selective.  In addition, the prototype
presented here has several advantages for real-
world applications including compactness,
portability, real-time analysis, and automation.
Further work will involve comparing neural net-
work sensor analysis to more conventional tech-
niques, exploring other neural network
paradigms, and evolving the preliminary proto-
types to field systems.

Information on ANN developments at Pacific
Northwest Naitonal Laboratory is available on
the World Wide Web at:

 http://www.emsl.pnl.gov:2080/docs/cie/neural/
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Figure 4: Sample responses and ANN classifications.  Sensor numbers and ANN
classification categories correspond to those found in Figure 3.
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Figure 5: Sample responses and ANN classifications.  Sensor numbers and ANN
classification categories correspond to those found in Figure 3.


